Exercises Prove the following statements:

1. Suppose x and y are natural numbers. Then $x y$ is odd implies that x and y are both odd.
2. If $a, b \in \mathbb{Z}$, then $a^{2}-4 b \neq 3$.
3. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers and $a^{2}+b^{2}=c^{2}$, then a or b is even.
4. Suppose x and y are rational numbers such that $x<y$. Prove that there exists $z \in \mathbb{Q}$ such that $x<z<y$.
5. Prove that the following statements are equivalent.

$$
A \subseteq B \quad A \cap B^{c}=\emptyset
$$

6. The product of any three consecutive natural numbers is divisible by 6 .
7. The Triangle Inequality for real numbers: $|a+b| \leq|a|+|b|$.
8. For all real numbers $a, b:||a|-|b|| \leq|a-b|$.
9. $\sum_{x=1}^{n} \frac{1}{\sqrt{x}} \leq 2 \sqrt{n}$.
10. $\left(2^{2 n-1}+1\right)$ is divisible by $3 \forall n \in \mathbb{N}$.
11. The sum of cubes of three consecutive natural numbers is divisible by 9 .
12. $\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-\frac{1}{n+1}$.
13. $\sum_{k=1}^{n} \frac{1}{k^{2}}<2-\frac{1}{n}$ for all integers $n \geq 2$.
